By OnlineEdumath   |  26th September, 2024
Let a = 1 unit. b = ½(2+1) b = 1.5 units. b is the radius of the semi circle. c = (1.5-d) units. d is the radius of the inscribed circle. e = 2-1.5 e = 0.5 units. It implies; (1....
By OnlineEdumath   |  26th September, 2024
Sir Mike Ambrose is the author of the question. Let the side length of the square be 10 units. Area square is; 10² = 100 square units. Therefore; Area R is; Area semi circle with r...
By OnlineEdumath   |  26th September, 2024
Calculating Area Orange. Let the side length of the inscribed regular triangle be a. It implies; 2a = 15 a = 7.5 units. Area sector with radius 15 units and angle 60° - Area regular tr...
By OnlineEdumath   |  26th September, 2024
Calculating inscribed shaded area green. a = ⅛*180(8-2) a = ¼*180*3 a = 135° a is the single interior angle of the regular octagon. 2b² = 4² b² = 8 b = 2√(2) units. c = 2b c = 4√(2)u...
By OnlineEdumath   |  26th September, 2024
Let the side length of the square be a. b²+(0.5a)² = 5² b = √(25-¼(a²)) units. c = a-b c = (a-√(25-¼(a²))) units. It implies, calculate a. 8² = (0.5a)²+(a-√(25-¼(a²)))² 64 = ¼(a²)+a²...
By OnlineEdumath   |  26th September, 2024
a = ½(360-2*50) a = ½(260)  a = 130° b² = 50²+50²-2*50*50cos130 b = 90.6307787037 units. sin(0.5*50) = r/c c = 2.3662015832r units. sin(0.5*50) = R/d d = 2.3662015832R units. It im...
By OnlineEdumath   |  25th September, 2024
a = (6-b) cm. b is the radius of the two congruent inscribed yellow half circles. 6 cm is the radius of the ascribed half circle and also, the diameter of the inscribed circle. c = ½(6) c =...
By OnlineEdumath   |  25th September, 2024
x²+(x²/(x+1)²) = 3 (x+1)²*x²+x² = 3(x+1)² x²(x²+2x+1)+x² = 3(x²+2x+1) x⁴+2x³+2x² = 3x²+6x+3 x⁴+2x³-x²-6x-3 = 0 It implies; x = ½(1-√(5)) = -0.6180339887 or x = ½(1+√(5)) = 1.6180339887...
By OnlineEdumath   |  25th September, 2024
Let the centre of the circle be N Therefore; N coordinate is; N(2, 4). Point P is; P(-2, (17/2)) Point Q is; Q(x, 0) Gradient of length NP is; (4-(17/2))/(2+2) = -9/8...
By OnlineEdumath   |  25th September, 2024
πa² = 73π a = √(73) units. a is the radius of the circle. b = 2a b = 2√(73) units. b is the diameter of the circle. c²+7² = (2√(73))² c² = 292-49 c² = 243 c = √(243) c = 9√(3) units....
WhatsApp Google Map

Safety and Abuse Reporting

Thanks for being awesome!

We appreciate you contacting us. Our support will get back in touch with you soon!

Have a great day!

Are you sure you want to report abuse against this website?

Please note that your query will be processed only if we find it relevant. Rest all requests will be ignored. If you need help with the website, please login to your dashboard and connect to support