Calculating the required angle, let it be x.
Let a be the side length of the equilateral triangle.
It implies;
6² = a²+10²-2*10*a cosy
36 = a²+100-20acosy
20acosy = a²+64
cosy = (a²+64)/(20a) --- (1).
8² = a²+10²-2*10*acos(60-y)
64 = a²+100-20a(½*cosy+½√(3)siny)
64 = a²+100-10acosy-10√(3)asiny
10acosy+10√(3)asiny = a²+36 --- (2).
At (1).
cosy = (a²+64)/(20a)
Calculating siny.
siny = opp/hyp
opp = √((20a)²-(a²+64)²)
opp = √(400a²-(a⁴+128a²+4096))
opp = √(-a⁴+272a²-4096)
Therefore;
siny = √(-a⁴+272a²-4096)/(20a) --- (3).
Calculating a.
Substituting (1) and (3) in (2).
10a((a²+64)/(20a))+10√(3)a(√(-a⁴+272a²-4096)/(20a)) = a²+36
½(a²+64)+½(√(3)*√(-a⁴+272a²-4096)) = a²+36
(a²+64)+(√(3)*√(-a⁴+272a²-4096)) = 2a²+72
(√(3)*√(-a⁴+272a²-4096)) = a²+8
3(-a⁴+272a²-4096) = (a²+8)²
-3a⁴+816a²-12288 = a⁴+16a²+64
4a⁴-800a²+12352 = 0
It implies;
a² = 16.8616
or
a² = 183.138
Therefore;
a ≠ √(16.8616) units.
a = √(183.138) units.
a = 13.532848924 units.
Again, a is the side length of the equilateral triangle.
Therefore, x the required angle is;
13.532848924² = 6²+8²-2*6*8cosx
96cosx = 100-13.532848924²
96cosx = -83.1379999998
cosx = -83.1379999998/96
x = acos(-83.1379999998/96)
x = 150°
Again, x is the required angle.
We appreciate you contacting us. Our support will get back in touch with you soon!
Have a great day!
Please note that your query will be processed only if we find it relevant. Rest all requests will be ignored. If you need help with the website, please login to your dashboard and connect to support