Calculating the area of the ascribed half circle.
Let a be the radius of the circle.
b² = a²+(3√(3))²
b = √(a²+27) units.
c = ½(3+b)
c = ½(3+√(a²+27)) units.
d = c-3
d = ½(3+√(a²+27))-3
d = ½(√(a²+27)-3) units.
e² = (3√(3))²-(½(√(a²+27)-3))²
e² = 27-¼(a²+27-6√(a²+27)+9)
e² = ¼(108-a²-27+6√(a²+27)-9)
e² = ¼(72-a²+6√(a²+27)).
It implies;
Calculating a.
e²+c² = a²
¼(72-a²+6√(a²+27))+(½(3+√(a²+27)))² = a²
¼(72-a²+6√(a²+27))+¼(9+6√(a²+27)+a²+27) = a²
72-a²+6√(a²+27)+36+6√(a²+27)+a² = 4a²
108+12√(a²+27) = 4a²
12²(a²+27) = (4a²-108)²
144a²+3888 = 16a⁴-864a²+ 11664
16a⁴-1008a²+7776 = 0
4a⁴-252a²+1944 = 0
a⁴-63a²+486 = 0
It implies;
a² = 54 or a² = 9
Therefore;
a ≠ √(9) units.
a = √(54) units.
a = 3√(6) units.
a = 7.34846922835 units.
Therefore, area half circle is;
½*πa²
= ½*π(3√(6))²
= ½*54π
= 27π square units.
We appreciate you contacting us. Our support will get back in touch with you soon!
Have a great day!
Please note that your query will be processed only if we find it relevant. Rest all requests will be ignored. If you need help with the website, please login to your dashboard and connect to support