Let a be the side length of the regular hexagon.
3² = 1²+a²-2acosb
2acosb = a²-8
cosb = (a²-8)/(2a) --- (1).
c²+(a²-8)² = (2a)²
c² = 4a²-(a⁴-16a²+64)
c = √(-a⁴+20a²-64) units.
sinb = c/(2a)
sinb = √(-a⁴+20a²-64)/(2a) --- (2).
(2√(3))² = 1²+a²-2acos(240-b)
11 = a²-2a(cos240cosb+sin240sinb)
11 = a²-2a(-½(cosb)-½√(3)sinb)
11 = a²+acosb+a√(3)sinb --- (3).
Substituting (1) and (2) in (3).
11 = a²+a((a²-8)/(2a))+a√(3)(√(-a⁴+20a²-64)/(2a))
11 = a²+½(a²-8)+½√(3)√(-a⁴+20a²-64)
22 = 2a²+a²-8+√(3)√(-a⁴+20a²-64)
30-3a² = √(3)√(-a⁴+20a²-64)
(30-3a²)² = √(3)²(-a⁴+20a²-64)
900-180a²+9a⁴ = -3a⁴+60a²-192
12a⁴-240a²+1092 = 0
2a⁴-40a²+182 = 0
a⁴-20a²+91 = 0
Let a² = p
It implies;
p²-20p+91 = 0
Calculating p.
(p-10)² = -91+(-10)²
p = 10±√(9)
p = 10±3
Therefore;
p = 7 units.
Or
p = 13 units.
Recall.
a² = p
Therefore;
For p = 13
a ≠ √(13)
a ≠ 3.60555127546 units.
For p = 7
a = √(7)
a = 2.64575131106 units.
Again, a is the side length of the regular hexagon.
Calculating area regular hexagon.
sin60 = d/√(7)
d = ½√(21) units.
d is half the height of the regular hexagon.
cos60 = e/√(7)
e = ½√(7) units.
f = 2e+a
f = 2*½√(7)+√(7)
f = 2√(7) units.
Area regular hexagon is;
2(area isosceles trapezoid with parallel lengths √(7) units and 2√(7) units respectively, and height ½√(21) units).
= 2*½(√(7)+2√(7))*½√(21)
= 3√(7)*½√(21)
= ½(21√(3)) square units.
We appreciate you contacting us. Our support will get back in touch with you soon!
Have a great day!
Please note that your query will be processed only if we find it relevant. Rest all requests will be ignored. If you need help with the website, please login to your dashboard and connect to support