Let the radius of the circle be a.
sinb = a/(a+a)
b = 30°
cos30 = c/2a
c = √(3)a units.
d = 2-c
d = (2-√(3)a) units.
sin30 = e/d
e =½(2-√(3)a) units.
cos30 = f/d
½√(3) = f/(2-√(3)a)
f = ½(2√(3)-3a) units.
g = a+a+a
g = 3a units.
h = f+g
h = ½(2√(3)-3a)+3a
h = ½(2√(3)+3a) units.
h is the diameter of the half circle.
j = ½h
j = ¼(2√(3)+3a) units.
j is the radius of the half circle.
k = a+j
k = a+¼(2√(3)+3a)
k = ¼(2√(3)+7a) units.
l = j-a
l = ¼(2√(3)+3a)-a
l = ¼(2√(3)-a) units.
Therefore;
k² = l²+e²
(¼(2√(3)+7a))² = (¼(2√(3)-a))²+(½(2-√(3)a))²
(12+28√(3)a+49a²)/16 = (12-4√(3)a+a²)/16+¼(4-4√(3)a+3a²)
12+28√(3)a+49a² = 12-4√(3)a+a²+16-16√(3)a+12a²
36a²+48√(3)a-16 = 0
9a²+12√(3)a-4 = 0
a²+⅓(4√(3))a = ⅑(4)
(a+⅓(2√(3)))² = ⅑(4)+(⅓*2√(3))²
(a+⅓(2√(3)))² = ⅑(4)+⅑(12)
(a+⅓(2√(3)))² = ⅑(16)
a = -⅓(2√(3))±√(⅑(16))
a = -⅓(2√(3))±⅓(4)
It implies;
a = ⅓(4-2√(3)) units.
a = 0.17863279495 units.
Again, a is the radius of the circle.
Recall.
j = ¼(2√(3)+3a)
And a = ⅓(4-2√(3))
j = ¼(2√(3)+2(⅓(4-2√(3))))
j = ¼(2√(3)+4-2√(3))
j = ¼(4)
j = 1 unit.
Again, j is the radius of the half circle.
It implies, area half circle is;
½(πj²)
= ½(π*1²)
= ½(π) square units.
We appreciate you contacting us. Our support will get back in touch with you soon!
Have a great day!
Please note that your query will be processed only if we find it relevant. Rest all requests will be ignored. If you need help with the website, please login to your dashboard and connect to support