Let AB be 4 units.
BC = 6 units.
Let a be the side length of the inscribed square.
Calculating a.
b² = 4²-a²
b = √(16-a²)
It implies;
a = √(16-a²)
6 = 4
Cross Multiply.
4a = 6√(16-a²)
2a = 3√(16-a²)
4a² = 9(16-a²)
4a² = 144-9a²
13a² = 144
a = 12√(13)/13 units.
a = 3.32820117735 units.
c² = 4²-(12/√(13))²
c² = 16-(144/13)
c = √(64/13)
c = 8√(13)/13 units.
It implies, area red is;
0.5*(8√(13)/13)(12√(13)/13)
= 48/13 square units.
sind = (8√(13)/13)/4
d = asin(2√(13)/13)
e = (90-asin(2√(13)/13))°
f = (2asin(2√(13)/13))°
Area Green is;
0.5*3*3sin(2asin(2√(13)/13))
= 54/13 square units.
g = 20√(13)/13 units.
h = (90-asin(2√(13)/13)°
Therefore;
j² = (20√(13)/13)²+7²-2*7*(20√(13)/13)cos(90-asin(2√(13)/13)
j = 3√(53/13) units.
j = 3√(689)/13 units.
((3√(53/13))/sin(90-asin(2√(13)/13)) = (7/sink)
k = (asin(7√(53)/53))°
l = (90-asin(7√(53)/53))°
tan(90-asin(7√(53)/53)) = m/(12√(13)/3)
m = 24√(13)/91 units.
Area Blue is;
(12√(13)/13)²-0.5(12√(13)/13)(24√(13)/91)
= (144/13)-(144/91)
= (1008-144)/91
= 864/91 square units.
It implies;
Area Red : Area Green : Area Blue is;
(48/13) : (54/13) : (864/91)
= 336 : 378 : 864
= 168 : 189 : 432
= 56 : 63 : 144
We appreciate you contacting us. Our support will get back in touch with you soon!
Have a great day!
Please note that your query will be processed only if we find it relevant. Rest all requests will be ignored. If you need help with the website, please login to your dashboard and connect to support