Calculating The Required Angle.
Let it be x.
a = ½(12)+b
a = (6+b) cm.
b is the radius of the inscribed sector.
Calculating b.
c² = 6²+12²
c² = 36+144
c = √(180)
c = 6√(5) cm.
It implies;
a = c
6+b = 6√(5)
b = (6√(5)-6) cm.
b = 7.416407865 cm.
Again, b is the radius of the inscribed sector.
tand = 12/6
d = 63.4349488229°
e = 180-d
e = 116.565051177°
f = ½(d)
f = 31.7174744115°
cos31.7174744115 = g/12
g = 10.2078097002 cm.
7.416407865² = 12²+12²-2*12*12cosh
55.00310562 = 288-288cosh
288cosh = 288-55.00310562
h = acos((288-55.00310562)/288)
h = 36°
j = 90-h
j = 54°
k = ½(180-36)
k = ½(144)
k = 72°
l = k-(90-d)
l = 72-(90-63.4349488229)
l = 45.4349488229°
m² = 2(12)²-2(12)²cos54
m = 10.8957719937 cm.
n² = 2(7.416407865)²-2(7.416407865)²cos45.4349488229
n = 5.72824632767 cm.
Therefore, x, the required angle is;
10.8957719937² = 5.72824632767²+10.2078097002²-2*10.2078097002*5.72824632767cosx
118.717847339 = 137.012184866-116.945696857cosx
116.945696857cosx = 137.012184866-118.717847339
cosx = (137.012184866-118.717847339)/116.945696857
x = acos(0.15643446504)
x = 81°
Again, x is the required angle.
We appreciate you contacting us. Our support will get back in touch with you soon!
Have a great day!
Please note that your query will be processed only if we find it relevant. Rest all requests will be ignored. If you need help with the website, please login to your dashboard and connect to support