a = x°
b = (90-x)°
R² = 6²+16²-2*6*16cosx
R² = 292-192cosx
cosx = (292-R²)/192 --- (1).
Notice.
At (1).
(292-R²) is adjacent.
192 is hypotenuse.
Let c be opposite.
c² = 192²-(292-R²)²
c² = 36864-85264+584R²-R⁴
c = √(-R⁴+584R²-48400) units.
It implies;
sinx = √(-R⁴+584R²-48400)/192 --- (3).
Again.
R² = 10²+6²-2*10*6cos(90-x)
R² = 136-120(cos90cosx+sin90sinx)
R² = 136+120sinx --- (4).
Substituting (3) in (4).
R² = 136+120(√(-R⁴+584R²-48400)/192)
R²-136 = 5√(-R⁴+584R²-48400)/8
(8R²-1088)² = 25(-R⁴+584R²-48400)
64R⁴-17408R²+1183744 = -25R⁴+14600R²-1210000
89R⁴-32008R²+2393744 = 0
(R²-(16004/89))² = (-16004/89)-(2393744
/89)
(R²-(16004/89))² = (256128016-213043216)/7921
(R²-(16004/89))² = (43084800/7921)
R² = (16004/89)±√(43084800/7921)
R² = (16004±480√(187))/89
Therefore;
R = √(16004-480√(187))÷89)
R = 10.2989574693 units.
Or
a = (10-x) units.
b = a-x
b = (10-2x) units.
c² = 6²-x²
c = √(36-x²) units.
d = 16-c
d = (16-√(36-x²)) units.
e = d-c
e = (16-√(36-x²))-√(36-x²)
e = (16-2√(36-x²)) units.
It implies;
Calculating x.
10(10-2x) = 16(16-2√(36-x²))
50-10x = 128-16√(36-x²)
16√(36-x²) = 78+10x
8√(36-x²) = 39+5x
64(36-x²) = 1521+390x+25x²
2304-64x² = 1521+390x+25x²
89x²+390x-783 = 0
Therefore;
x ≠ -5.8786 units.
x = 1.49657 units.
Recall.
c = √(36-x²)
And x = 1.49657 units.
c = √(36-1.49657²)
c = 5.8103595616 units.
Recall Again.
d = 16-c
And c = 5.8103595616 units.
d = 16-5.8103595616
d = 10.1896404384 units.
Therefore R, radius of the ascribed circle is;
R = √(d²+x²)
R = √(10.1896404384²+1.49657²)
R = 10.2989559679 units.
We appreciate you contacting us. Our support will get back in touch with you soon!
Have a great day!
Please note that your query will be processed only if we find it relevant. Rest all requests will be ignored. If you need help with the website, please login to your dashboard and connect to support