Let a be the side length of the regular hexagon.
sin30 = b/a
b = ½(a) cm.
c = 2b+a
c = 2a cm.
cos30 = d/a
d = ½√(3)a cm.
e = ½(162√(3)) cm²
e = 81√(3) cm²
e is half the area of the regular hexagon.
Calculating a.
½(2a+a)*½√(3)a = 81√(3)
¼(3a²) = 81
a² = 27*4
a = 6√(3) cm.
Again, a is the side length of the regular hexagon.
sin30 = f/(6√(3))
f = 3√(3) cm.
Let g be the radius of the inscribed circle.
h = (3√(3)-g) cm.
tan30 = g/(3√(3)-g)
√(3)g = (3√(3)-g)
g(√(3)+1) = 3√(3)
g = ½(9-3√(3)) cm.
g = 1.9019237886 cm.
Again, g is the radius of the inscribed circle.
Recall.
h = 3√(3)-g
h = 3√(3)-½(9-3√(3))
h = ½(6√(3)-9+3√(3))
h = ½(9√(3)-9) cm.
cos30 = ½(9-3√(3))/j
√(3)j = 9-3√(3)
j = ⅓(9√(3)-9)
j = (3√(3)-3) cm.
k = a-j
k = 6√(3)-3√(3)+3
k = (3√(3)+3) cm
tan30 = l/(½(9-3√(3)))
l = (9-3√(3))/(2√(3))
l =½(3√(3)-3) cm.
m = h+a+l
m = ½(9√(3)-9)+6√(3)+½(3√(3)-3)
m = ½(9√(3)-9+12√(3)+3√(3)-3)
m = ½(24√(3)-12)
m = (12√(3)-6) cm.
n² = (12√(3)-6)²+(3√(3)+3)²-2(3√(3)+3)*(12√(3)-6)cos120
n = 20.1727170402 cm.
(20.1727170402/sin120) = ((12√(3)-6)/sino)
o = 39.3985611553°
p = 120-o
p = 80.6014388447°
q² = 2a²
q² = 2(6√(3))²
q² = 216
q = √(216)
q = 6√(6) cm.
q = 14.6969384567 cm.
r = ½(q)
r = 3√(6) cm.
r = 7.3484692283 cm.
s = 45+p
s = 125.6014388447°
Therefore, (AC)² exactly in decimal cm² is;
(AC)² = 7.3484692283²+20.1727170402²-2*7.3484692283*20.1727170402cos125.6014388447
AC = 25.1700366231 cm.
It implies;
(AC)² = 633.5307436082 cm²
We appreciate you contacting us. Our support will get back in touch with you soon!
Have a great day!
Please note that your query will be processed only if we find it relevant. Rest all requests will be ignored. If you need help with the website, please login to your dashboard and connect to support