Let the side length of the regular hexagon be 1 unit.
Calculating the side length of the regular pentagon.
Let it be b.
(2/sin72) = (a/sin60)
a = 1.82118599462 units.
(1.82118599462/sin108) = (b/sin36)
b = 1.12555484451 units.
Notice; b is the side length of the regular pentagon.
d = 180-60-72
d = 48°
(2/sin72) = (e/sin48)
e = 1.56277742226 units.
f² = 1.56277742226²+1.12555484451²-2*1.56277742226*1.12555484451cos144
f = 2.56032328694 units.
(2.56032328694/sin144) = (1.56277742226/sing)
g = 21.02492451032°
h = 180-144-21.02492451032
h = 14.97507548968°
j = 108-21.02492451032
j = 86.97507548968°
k = 90-86.97507548968
k = 3.02492451032°
l = 3.02492451032+14.97507548968
l = 18°
m = 180-18-36
m = 126°
(1.56277742226/sin126) = (n/sin36)
n = 1.13542425908 units.
It implies;
Area Orange is;
0.5*1.13542425908*1.56277742226sin18
= 0.27416225634 square units.
Calculating Area Green.
It is;
0.5*2*1.56277742226sin60-0.5*1.12555484451*1.12555484451sin108-Area Orange
= 1.35340494814-0.60243424766-0.27416225634
= 0.47680844414 square units.
It implies;
Area Orange ÷ Area Green to 2 decimal places is;
0.27416225634÷0.47680844414
= 0.57499454909
≈ 0.57
We appreciate you contacting us. Our support will get back in touch with you soon!
Have a great day!
Please note that your query will be processed only if we find it relevant. Rest all requests will be ignored. If you need help with the website, please login to your dashboard and connect to support