Let r be the radius of the inscribed semi circle.
Calculating r.
r² = (r-4)²+(r-8)²
r² = r²-8r+16+r²-16r+64
r²-24r+80 = 0
It implies;
r ≠ 4 cm.
r = 20 cm.
a² = 20²+16²
a = 4√(41) cm.
(4/sinb) = (4√(41)/sin45)
b = 6.34019174591°
c² = 2(20)²
c = 20√(2) cm.
Area A is;
½*4*20√(2)sin45 - ½(4²) - (6.34019174591*π*20²/360)
= 40 - 8 - 22.13144423478
= 9.86855576522 cm²
d = atan(20/12)
d = atan(5/3)°
Therefore;
e = atan(⅗)°
f² = 20²+12²
f = 4√(34) cm.
(4/sing) = (20/sin(atan⅗))
g = 5.90614111377°
Area B is;
0.5*4*4√(34)sin(atan⅗) - (5.90614111377π*400/360)
= 24 - 20.61632170454
= 3.38367829546 cm²
It implies;
Area (A+B) in cm² to 2 decimal places is;
9.86855576522 + 3.38367829546
= 13.25223406068
≈ 13.25 cm²
We appreciate you contacting us. Our support will get back in touch with you soon!
Have a great day!
Please note that your query will be processed only if we find it relevant. Rest all requests will be ignored. If you need help with the website, please login to your dashboard and connect to support