Let the square side be 3 cm.
Therefore;
Observing similar triangle ratios.
3 = 2
1 = a
Cross Multiply.
a = ⅔ units.
b = √(3²+1²)
b = √(10) cm.
c = √(2²+(⅔)²)
c = ⅓(2√(10)) cm.
d = √(√(10)²+(⅓(2√(10)))²)
d = ⅓√(130) cm.
e =½(d)
e = ⅙√(130) cm.
tanf = (√(10)/(2√(10)/3))
f = 56.30993247402°
g = 180-56.30993247402-atan(2/(2/3))
g = 52.1250163489°
h = 90-52.1250163489
h = 37.8749836511°
j² = (⅙√(130))²+(⅓(2√(10)))²-2(⅙√(130))(½(2√(10)))cos56.30993247402
j = 1.90029237517 cm.
(1.90029237517/sin56.30993247402) = ((2√(10)/3)/sink)
k = 67.38013505196°
l = 180-67.38013505196-37.8749836511
l = 74.74488129694°
Calculating x.
(x/sin67.38013505196) = ((√(130)/6)/sin74.74488129694)
x = 1.81818181818 cm.
x = (20/11) cm.
Therefore y is;
3-x
= 3-(20/11)
= (13/11) cm.
It implies;
x÷y is;
(20/11)÷(13/11)
= 20/13
= 1.53846153846
We appreciate you contacting us. Our support will get back in touch with you soon!
Have a great day!
Please note that your query will be processed only if we find it relevant. Rest all requests will be ignored. If you need help with the website, please login to your dashboard and connect to support