Sir Mike Ambrose is the author of the question.
Calculating Blue Area + Red Area Exactly.
Let x be the side length of the regular octagon.
a = ⅛*180(8-2)
a =135°
a is the single interior angle of the regular octagon.
b = 135-½(180-135)
b = 135-22.5
b =112.5°
c² = 2x²-2x²cos135
c = 1.84775906502x cm.
Calculating x.
0.5*x²sin135+0.5*0.5x*1.84775906502xsin112.5 = 16+24√(2)
0.78033008589x² = 49.941125497
x² = 64
x = 8 cm.
Again, x is the side length of the regular octagon.
Calculating Area Blue.
2d² = 8²
d² = 32
d = 4√(2) cm.
e = 2d+8
e = (8√(2)+8) cm.
Area Blue is;
(½((8√(2)+8)+8)*4√(2))+(½(8)*(8√(2)+8))-(½*4*4)-(16+24√(2))
= 4√(2)(4√(2)+8)+(32√(2)+32)-8-16-24√(2)
= 32+32√(2)+32√(2)+32-24-24√(2)
= 64√(2)+64-24-24√(2)
= 40+40√(2)
= 40(1+√(2)) cm²
Calculating Area Red.
f² = 2(8)²-2(8)² cos135
f = 14.7820725202 cm.
g² = 14.7820725202²+4²-2*4*14.7820725202cos112.5
g = 16.7261622014 cm.
(16.7261622014/sin112.5) = (4/sinh)
h = 12.7643896827°
j = 135-h-22.5
j = 99.7356103173°
k = 180-j
k = 80.2643896827°
l = 180-k-45
l = 54.7356103173°
(8/sin80.2643896827) = (m/sin54.7356103173)
m = 6.62741699798 cm.
Area red is;
0.5*6.62741699798*8cos45
= 18.7451660041 cm²
It implies;
Blue Area + Red Area is;
40(1+√(2))+18.7451660041
= 96.5685424949+18.7451660041
= 115.313708499 cm² in exact decimal.
We appreciate you contacting us. Our support will get back in touch with you soon!
Have a great day!
Please note that your query will be processed only if we find it relevant. Rest all requests will be ignored. If you need help with the website, please login to your dashboard and connect to support