Calculating the area of the inscribed regular pentagon.
Let the single side length of the inscribed regular pentagon be x.
12²=2y²-2y²cos108
y = √(144/(2-2cos108))
y = 7.416407865 cm.
Therefore;
x = √(2(7.416407865)²-2(7.416407865)²cos36)
x = 4.58359213501 cm.
Therefore area inscribed regular pentagon is;
(5*4.58359213501²)/(4tan(36))
= 36.1460548598 cm².
We appreciate you contacting us. Our support will get back in touch with you soon!
Have a great day!
Please note that your query will be processed only if we find it relevant. Rest all requests will be ignored. If you need help with the website, please login to your dashboard and connect to support