Calculating yellow area.
a² = 5²+5²-2*5*5cos120
120° is the single interior angle of the regular hexagon.
a = 5√(3) units.
a = 8.6602540378 units.
tanb = a/(2.5)
b = atan(5√(3)/(5/2))
b = atan(2√(3))°
b = 73.897886248°
b is the angle of the yellow incomplete sector.
c² = 2.5²+(5√(3))²
c = 8.6746757864 units.
d = ½(c)
d = 4.3373378932 units.
d is the radius of the yellow incomplete sector.
e = 90-atan(2.5/(5√(3)))
e = 73.897886248°
f² = 4.33733789322+5²-2*5*4.3373378932cos73.897886248
f = 5.6376315149 units.
(5.6376315149/sin73.897886248) = (4.3373378932/sing)
g = 47.6609317741°
5² = 4.3373378932²+5.6376315149²-2*5.6376315149*4.3373378932cosh
25.5953890976/48.9046255949 = cosh
h = 58.4411819776°
j = h-g
j = 10.7802502035°
k² = 2(4.3373378932)²-2(4.3373378932)²cos10.7802502035
k = 0.814870654 units.
l = ½(180-10.7802502035)
l = 84.6098748983°
(5/sin(180-73.897886248)) = (4.3373378932/sinm)
m = 56.4533220414°
n = 180-m-(180-73.897886248)
n = 17.4445642066°
(5/sin(180-73.897886248)) = (o/sin17.4445642066)
o = 1.5601196876 units.
p = d-o
p = 2.7772182056 units.
q² = 2.7772182056²+0.814870654²-2*0.814870654*2.7772182056cos84.6098748983
q = 2.8198907223 units.
2.8198907223² = 50-50cosr
50cosr = 42.0482163143
r = 32.7579093794°
Therefore, yellow area is;
(73.897886248π*4.3373378932²/360)-(0.5*2.7772182056*0.814870654sin84.6098748983)-(32.7579093794πx5²/360)+(0.5*5*5sin32.7579093794)
= 12.1318184065-1.1265333436-7.1466671843+6.76363209
= 10.6222499686 square units.
We appreciate you contacting us. Our support will get back in touch with you soon!
Have a great day!
Please note that your query will be processed only if we find it relevant. Rest all requests will be ignored. If you need help with the website, please login to your dashboard and connect to support