Let the square side length be a.
It implies;
Area square is a²
Calculating a² (Area of the Square).
√(2)² = b²+c²
c = √(2-b²) --- (1).
√(68)² = (a+b)²+c²
68 = (a+b)²+√(2-b²)²
68 = (a+b)²+2-b²
66 = a²+2ab --- (2).
8² = b²+(c+a)² --- (3).
64 = b²+c²+2ac+a²
64 = b²+(√(2-b²)²+2a√(2-b²)+a²
64 = b²+2-b²+2a√(2-b²)+a²
62 = 2a√(2-b²)+a²
(62-a²)² = 4a²(2-b²)
3844-124a²+a⁴ = 8a²-4a²b²
132a²-3844-a⁴= 4a²b²
b² = (132a²-3844-a⁴)/(4a²)
b = √(132a²-3844-a⁴)/2a --- (3).
Substituting (3) in (2).
66 = a²+2ab
And b = √(132a²-3844-a⁴)/2a
Therefore;
66 = a²+2a√(132a²-3844-a⁴)/2a
66 = a²+√(132a²-3844-a⁴)
(66-a²)² = 132a²-3844-a⁴
4356-132a²+a⁴ = 132a²-3844-a⁴
2a⁴-264a²+8200 = 0
a⁴-132a²+4100 = 0
Let a² be p.
It implies;
p²-132p+4100 = 0
Calculating p via completing the square approach.
(p-66)² = -4100+(-66)²
(p-66)² = 256
p = 66±√(256)
p = 66-16 = 50 units.
Or
p = 66+16 = 82 units.
And p = a²
It implies;
a² ≠ p ≠ 82
a² = p = 50 square units.
a² = 50 square units
Again, a² is the area of the square.
We appreciate you contacting us. Our support will get back in touch with you soon!
Have a great day!
Please note that your query will be processed only if we find it relevant. Rest all requests will be ignored. If you need help with the website, please login to your dashboard and connect to support