(3/sin108) = (EG/sin18)
EG = 0.9747590887 units.
(3/sin108) = (EF/sin54)
EF = 2.55195242506 units.
AF = 4-2.55195242506
AF = 1.44804757494 units.
sin18 = a/1.44804757494
a = 0.44747130932 units.
cos18 = b/1.44804757494
b = 1.37717508205 units.
b is the height of the trapezoid.
Let BJ be x.
c = (2-x) units.
d² = 1.44804757494²+2²-4*1.44804757494cos108
d = 2.80833171413 units.
(2.80833171413/sin108) = (2/sine)
e = 42.63384501172°
f = 72-42.63384501172
f = 29.36615498828°
g² = 3²+2.80833171413²-6*2.80833171413cos29.36615498828
g = 1.48387976624 units.
(1.48387976624/sin29.36615498828) = (3/sing1)
g1 = 82.49471818166°
g2 = 180-82.49471818166-29.36615498828
g2 = 68.13912683006°
h = 4-(3-0.44747130932)
h = 1.44747130932 units.
j = (x-1.44747130932) units.
k² = (x-1.44747130932)²+1.37717508205²
k² = x²-2.89494261864x+2.0951731913+1.89661120662
k = √(x²-2.89494261864x+3.99178439792) units.
k is IJ.
Therefore;
√(x²-2.89494261864x+3.99178439792)² = 1.44804757494²+(2-x)²-2*1.44804757494(2-x)cos72
(x²-2.89494261864x+3.99178439792) = 2.09684177929+4-4x+x²-0.89494261864(2-x)
-2.89494261864x+3.99178439792) = 6.09684177929-4x+0.89494261864x-1.78988523728
(4-0.89494261864-2.89494261864)x = 6.09684177929-3.99178439792-1.78988523728
0.21011476272x = 0.31517214409
x = 1.5 units.
And x is BJ.
AJ = AB-BJ
AJ = 4-1.5
AJ = 2.5 units.
Area Blue Trapezoid is;
0.5(3+2.5)*1.37717508205
= 0.5*5.5*1.37717508205
= 3.78723147564 square units.
We appreciate you contacting us. Our support will get back in touch with you soon!
Have a great day!
Please note that your query will be processed only if we find it relevant. Rest all requests will be ignored. If you need help with the website, please login to your dashboard and connect to support