AC = √(12²+12²)
AC = 12√(2) cm.
AE = √(12²+6²)
AE = 6√(5) cm.
Angle BAE = atan(½)°
Angle CAE = 45-atan(1/2)
Angle CAE = 18.43494882292°
cos18.43494882292 = (AF)/12√(2)
AF = 16.099689438 cm.
EF = AF-AE
EF = 16.099689438-6√(5)
EF = 2.683281573 cm.
Angle BCG = 90-45-18.43494882292
Angle BCG = 26.56505117708°
tan26.56505117708 = (BG)/12
BG = 6 cm.
CF = √(6²-2.683281573²)
CF = 5.366563146 cm.
(BF)² = 16.099689438²+12²-24*16.099689438cos(atan(1/2))
BF = 7.58946638441 cm.
(7.58946638441/sin(atan(0.5))) = (16.099689438/sina)
a = 108.43494882293°
Angle CBF = 108.43494882293-90
Angle CBF = 18.43494882293°
Angle FBG = 90-18.43494882293 = 71.56505117707°
(EG)² = 6²+(6√(5))²-72√(5)cos(atan(0.5)
EG = 8.48528137424 cm.
(8.48528137424/sin(atan(0.5))) = (6/sinb)
b = 18.43494882293°
b is angle CGE.
Angle BGE = atan(2)-18.43494882292 = 45°
d = 180-45-71.56505117707
d = 63.43494882293°
(6/sin63.43494882293) = (e/sin45)
e = 4.74341649025 cm.
f² = 4.74341649025²+12²-24*4.74341649025cos18.43494882293
f = 7.64852927039 cm.
(7.64852927039/sin18.43494882293) = (4.74341649025/sing)
g = 11.30993247401°
g is angle BCH.
It implies;
tan11.30993247401 = BH/12
BH = 2.4 cm.
BH = (12/5) cm.
BH = 2⅖ cm.
Therefore;
GH= BG-BH
GH = 6-2⅖
GH = 6-(12/5)
GH = (18/5) cm.
GH = 3⅗ cm.
Therefore;
Length BH ÷ Length GH is;
(12/5)÷(18/5)
= ⅔
We appreciate you contacting us. Our support will get back in touch with you soon!
Have a great day!
Please note that your query will be processed only if we find it relevant. Rest all requests will be ignored. If you need help with the website, please login to your dashboard and connect to support