Let R=the bigger inscribed circle radius.
Let r=the smaller inscribed circle radius.
It implies;
R+r=6√(3)-6=4.4
R+r=4.4 -------(1).
And the radius of the ascribed semi circle is 6 unit.
Calculating the R and r considering the radius of the ascribed semi circle.
R=√((6-R)²-R²)
Therefore;
R=√(36-12R) ----- (2).
r=√((6-R)²-R²)
Therefore;
r=√(36-12r) ----- (3).
Adding (2) and (3).
R+r=√(36-12R)+√(36-12r)-----(4)
Therefore equating (1) and (4).
√(36-12R)+√(36-12r)=4.4------(5)
At (1).
R=4.4-r -------(6).
Substituting (6) in (5).
√(36-12(4.4-r))+√(36-12r)=4.4
Therefore;
4.4=√(36-52.8-12r)+√(36-12r)
4.4=√(12r-16.8)+√(36-12r)
4.4-√(12r-16.8)=√(36-12r)
(4.4-√(12r-16.8))²=36-12r
19.36-8.8√(12r-16.8)+12r-16.8=36-12r
2.56-8.8√(12r-16.8)=36-24r
24r-33.44=8.8√(12r-16.8)
(24r-33.44)²=8.8²(12r-16.8)
576r²-1605.12r+1118.23=929.28r-1301
576r²-2534.4r+2419.23=0
Using a quadratic equation app to resolve the above quadratic equation, it implies
r≠2.99997
r=1.40003≈1.4 unit.
Calculating R, using (6).
R=4.4-r, and r=1.4
Therefore;
R=3 unit.
Length QO will be;
√((4.4)²+(3-1.4)²
=√(4.4²+1.6²)
=√(21.92)
QO = 4.68187996429 unit.
We appreciate you contacting us. Our support will get back in touch with you soon!
Have a great day!
Please note that your query will be processed only if we find it relevant. Rest all requests will be ignored. If you need help with the website, please login to your dashboard and connect to support