Sir Mike Ambrose is the author of the question.
Calculating Blue Area Exactly.
Calculating Area Brown.
a = (180(12-2))/12
a = 1800/12
a = 300/2
a = 150°
a is the single interior angle of the regular polygon with 12 sides.
b = ½(360-300)
b = 30°
c = ½(360-240)
c = 60°
sin30 = d/4
d = 2 cm.
sin60 = e/4
e = 2√(3) cm.
f = 2e+4
f = (4+4√(3)) cm.
sin30 = g/4
g = 2 cm.
sin60 = h/4
h = 2√(3) cm.
j = 2g+f
j = 2(2)+(4+4√(3))
j = (8+4√(3)) cm.
Brown Area is;
½*2(4+4+4√(3))+½*2√(3)((4+4√(3))+ (8+4√(3)))+½*2 (8+4√(3))
= (8+4√(3))+√(3)(12+8√(3))+(8+4√(3))
= 2(8+4√(3))+24+12√(3)
= 16+8√(3)+24+12√(3)
= (40+20√(3)) cm²
Calculating Area Regular Hexagon Side Length.
Let it be x.
k² = 2x²-2x²cos120
k = √(3)x cm.
It implies;
2*½(x²sin120)+(√(3)x*x) = Area Brown
½√(3)x²+√(3)x² = (40+20√(3))
3√(3)x² = 80+40√(3)
x² = ⅑(80√(3))+⅓(40)
x² = ⅑(80√(3)+120)
x = √(⅑(80√(3)+120))
x = ⅓(2√(20√(3)+30) cm.
x = 5.35997579395 cm.
Again, x is the side length of the regular hexagon.
l = ½(x)
l = ½*⅓(2√(20√(3)+30)
l = ⅓√(20√(3)+30) cm.
l = 2.67998789697 cm.
Area Blue Exactly is;
½*2(⅓√(20√(3)+30))²sin120
= ½√(3)(⅓√(20√(3)+30))²
= ½√(3)*⅑(20√(3)+30)
= ⅑√(3)(10√(3)+15)
= ⅑(30+15√(3))
= ⅓(5√(3)+10) cm²
= 6.22008467928 cm²
= (a√(3)+2a)/b
Where;
a = 5
b = 3
We appreciate you contacting us. Our support will get back in touch with you soon!
Have a great day!
Please note that your query will be processed only if we find it relevant. Rest all requests will be ignored. If you need help with the website, please login to your dashboard and connect to support