Sir Mike Ambrose is the author of the question.
Calculating Exactly Angle Alpha - Angle Beta.
Let Alpha be x.
Let Beta be y.
(6+6√(2))² = 8²+10²-2*8*10cosa
36+72√(2)+72 = 164-160cosa
160cosa = 164-36-72-72√(2)
160cosa = 56-72√(2)
20cosa = 7-9√(2)
cosa = (7-9√(2))/20
a = acos((7-9√(2))/20)°
a = 106.642318459°
8² = 10²+(6+6√(2))²-2*10(6+6√(2))cosb
64 = 100+36+72√(2)+72-(120+120√(2))cosb
(120+120√(2))cosb = 144+72√(2)
cosb = (144+72√(2))/(120+120√(2))
cosb = ⅕(3√(2))
b = acos(⅕(3√(2)))°
cosb = c/10
(⅕(3√(2))) = c/10
c = ⅕(30√(2))
c = 6√(2) cm.
c is AD.
10² = 8²+(6+6√(2))²-2*8(6+6√(2))cosd
100 = 64+36+72√(2)+72-(96+96√(2))cosd
(96+96√(2))cosd = 72√(2)+72
cosd = (72+72√(2))/(96+96√(2))
cosd = ¾
d = acos(¾)°
cosd = e/8
¾ = e/8
e = 6 cm.
e is AC.
f² = (6√(2))²+12²
f = 6√(6) cm.
f is BD.
g² = 6²+12²
g = 6√(5) cm.
g is BC
It implies;
Angle Alpha (x) is;
x = 180-acos(6√(2)/(6√(6)))-acos(10/(6√(6)))
x = (180-acos(⅓√(3))-acos(5√(6)/18))°
Angle Beta, y is;
y = 180-acos(6/(6√(5)))-acos(8/(6√(5)))
y = (180-acos(⅕√(5))-acos(4√(5)/15))°
It implies;
Alpha - Beta (x-y) exactly is;
(180-acos(⅓√(3))-acos(5√(6)/18))-(180-acos(⅕√(5))-acos(4√(5)/15))
= (acos(⅕√(5))+acos(4√(5)/15)-acos(⅓√(3))-acos(5√(6)/18))°
= 14.9710507296°
We appreciate you contacting us. Our support will get back in touch with you soon!
Have a great day!
Please note that your query will be processed only if we find it relevant. Rest all requests will be ignored. If you need help with the website, please login to your dashboard and connect to support