Let a be the radius of the circ.
Calculating a.
b = ½(12+2)
b = 7 units.
c = ½(4+6)
c = 5 units.
d = b-2
d = 7-2
d = 5 units.
It implies;
a² = c²+d²
a = √(5²+5²)
a = √(50)
a = 5√(2) units.
Again, a is the radius of the circle.
Calculating blue area.
e² = 6²+12²
e = 6√(5) units.
sinf = (0.5*6√(5))/(5√(2))
f = 71.5650511771°
g = 2f
g = 143.130102354°
h² = 4²+2²
h = 2√(5) units.
sinj = (0.5*2√(5))/(5√(2))
j = 18.4349488229°
k = 2j
k = 36.8698976458°
Area blue is;
(½*6*12)+(143.130102354π(5√(2))²/360)-(½*(5√(2))²sin143.130102354°)+(½*2*4)+(36.8698976458π(5√(2))²/360)-(½*(5√(2))²sin36.8698976458)
= 36+62.4522886198-15+4+16.0875277198-15
= 88.5398163396 square units.
Calculating pink area.
l² = 4²+12²
l = 4√(10) units.
sinm = (0.5*4√(10))(5√(2))
m = 63.4349488229°
n = 2m
n = 126.869897646°
o² = 6²+2²
o = 2√(10) units.
sinp = (0.5*2√(5))/(5√(2))
p = 26.5650511771°
q = 2p
q = 53.1301023542°
Area pink is;
(½*4*12)+(126.869897646π(5√(2))²/360)-(½*(5√(2))²sin126.869897646)+(½*2*6)+(53.1301023542π(5√(2))²/360)-(½*(5√(2))²sin53.1301023542)
= 24+55.3574358898-20+6+23.1823804501-20
= 68.5398163399 square units.
Therefore;
Blue Area - Pink Area is;
88.5398163396-68.5398163399
= 20 square units.
Or
A very smart approach is;
Area Blue - Area Pink is;
((12*6)+(4*2))-((12*4)+(6*2)
= (72+8)-(48+12)
= 80-60
= 20 square units.
We appreciate you contacting us. Our support will get back in touch with you soon!
Have a great day!
Please note that your query will be processed only if we find it relevant. Rest all requests will be ignored. If you need help with the website, please login to your dashboard and connect to support