Calculating x.
Let a be the height of the inscribed isosceles triangle.
b = ½(7)+7
b = 10.5 units.
c² = 10.5²+a²
c = √(a²+110.25) units.
Let d be one of the two equal inscribed angles.
cosd = 10.5/√(a²+110.25) --- (1).
e² = 3.5²+a²
e = √(a²+12.25) units.
f = (10-√(a²+12.25)) units.
It implies;
(10-√(a²+12.25))² = √(a²+110.25)²+14²-2*14*√(a²+110.25)cosd
100-20√(a²+12.25)+a²+12.25 = a²+110.25+196-28√(a²+110.25)cosd
100-20√(a²+12.25) = 294-28√(a²+110.25)cosd
50-10√(a²+12.25) = 147-14√(a²+110.25)cosd
14√(a²+110.25)cosd = 97+10√(a²+12.25) --- (2).
Substituting (1) in (2).
14√(a²+110.25)*(10.5/√(a²+110.25)) = 97+10√(a²+12.25)
14*10.5 = 97+10√(a²+12.25)
50 = 10√(a²+12.25)
25 = a²+12.25
a² = 12.75
a = √(12.75) units.
a = 3.57071421427 units.
Again, a is the height of the inscribed isosceles triangle.
tang = a/(0.5*7)
g = atan(3.57071421427/3.5)
g = 45.5729959992°
Therefore, the required length, x is;
x² = 10²+14²-2*10*14cos45.5729959992
x = 10 units.
We appreciate you contacting us. Our support will get back in touch with you soon!
Have a great day!
Please note that your query will be processed only if we find it relevant. Rest all requests will be ignored. If you need help with the website, please login to your dashboard and connect to support