Let a be the side length of the two equal inscribed lengths.
r = 2+1
r = 3 units.
r is the radius of the ascribed half circle.
b²+(a/2)² = 3²
b²= 9-¼(a²)
b = √(9-¼(a²))
b = ½√(36-a²) units.
c = a-b
c = a-½√(36-a²)
c = ½(2a-√(36-a²)) units.
Calculating a.
2² = c²+(a/2)²
4 = (½(2a-√(36-a²)))²+¼(a²)
4 = ¼(4a²-4a√(36-a²)+(36-a²))+¼(a²)
16 = 4a²-4a√(36-a²)+36-a²+a²
16 = 4a²-4a√(36-a²)+36
4 = a²-a√(36-a²)+9
a√(36-a²) = a²+5
a²(36-a²) = (a²+5)²
36a²-a⁴ = a⁴+10a²+25
2a⁴-26a²+25 = 0
Let p = a²
It implies;
2p²-26p+25 = 0
(p-½(13))² = (-½(13))²-(25/2)
(p-½(13))² = ¼(169)-½(25)
(p-½(13))² = ¼(169-50)
(p-½(13))² = ¼(119)
p = ½(13)±√(¼(119))
p = ½(13)±½√(119)
Therefore;
p = ½(13-√(119)) units.
Or
p = ½(13+√(119)) units.
Recall.
p = a²
It implies;
For p = ½(13-√(119)) units.
a = √(½(13-√(119)))
a = 1.02256732917 units.
For p = ½(13+√(119)) units.
a = √(½(13+√(119)))
a = 3.45750720279 units.
Notice.
a ≠ 1.02256732917 units.
a = 3.45750720279 units.
sind = 0.5a/3
d = asin(0.5*3.45750720279/3)
d = 35.1873016959°
e = 2d
e = 70.3746033917°
(3.45750720279/sinf) = (2/sin35.1873016959)
f = 85.0010782563°
g = e+f
g = 70.3746033917+85.0010782563
g = 155.375681648°
h = ½(180-g)
h = ½(180-155.375681648)
h = 12.312159176°
j = 90-h
j = 77.687840824°
It implies;
cos77.687840824 = k/(1+2+3)
k = 6cos77.687840824
k = 1.27942636679 units.
Therefore, the required inscribed area, area pink shaded triangle is;
Area triangle with height 1.27942636679 units and base 6sin77.687840824
= 0.5*1.27942636679*6sin77.687840824
= 3.75 square units.
We appreciate you contacting us. Our support will get back in touch with you soon!
Have a great day!
Please note that your query will be processed only if we find it relevant. Rest all requests will be ignored. If you need help with the website, please login to your dashboard and connect to support