Let the side length of the inscribed square be a.
b² = 2a²
b = √(2)a cm.
b is the diagonal of the inscribed square.
c²+a² = (4+6)²
c = √(100-a²) cm.
d = c-a
d = (√(100-a²)-a) cm.
14² = 6²+(4+6)²-2*6*10cose
196 = 136-120cose
120cose = -60
e = acos(-½)
e = 120°
f = 180-e
f = 60°
Calculating a.
tan60 = a/(√(100-a²)-a)
√(3)(√(100-a²)-a) = a
√(3(100-a²))-√(3)a = a
√(300-3a²) = a+√(3)a
300-3a² = a²+2√(3)a²+3a²
300 = 7a²+2√(3)a²
(7+2√(3))a² = 300
a² = 28.6694463637 cm²
a² is the area of the inscribed square.
It implies;
a = √(28.6694463637)
a = 5.354385713 cm.
Again, a is the side length of the inscribed square.
Recall.
c = √(100-a²)
Again a² = 28.6694463637 cm²
c = √(100-28.6694463637)
c = 8.4457417458 cm.
tang = 5.354385713/8.4457417458
g = 32.373659127°
Therefore, shaded area is;
Area sector with radius 10 cm and angle 32.373659127° - Area triangle with height 5.354385713 cm and base 8.4457417458 cm respectively.
(32.373659127π*100/360)-(0.5*5.354385713*8.4457417458)
= 28.2513471342-22.6108794697
= 5.6404676645 cm²
(a) Shaded Area ÷ Square Area to 2 decimal places is;
5.6404676645÷28.6694463637
= 0.1967414227
≈ 0.2
(b) Calculating angle alpha to the nearest degree.
Let it be h.
sin60 = 5.354385713/j
j = 6.1827120655 cm.
k = 10-j
k = 3.8172879345 cm.
It implies;
l² = 3.8172879345²+5.354385713²-2*3.8172879345*5.354385713cos30
l = 4.7751336693 cm.
Therefore, angle alpha to the nearest degree (h) is;
(4.7751336693/sin60) = (3.8172879345/sinh)
h = 43.8131704367°
h ≈ 44°
We appreciate you contacting us. Our support will get back in touch with you soon!
Have a great day!
Please note that your query will be processed only if we find it relevant. Rest all requests will be ignored. If you need help with the website, please login to your dashboard and connect to support