Calculating shaded red area.
Let a be the diameter of the inscribed big half circle.
Therefore, 2a is the diameter of the bigger half circle or a is the radius of the bigger half circle.
a² = 6²+b²
b = √(a²-36) cm.
6 - c
a - √(a²-36)
Cross Multiply.
c = (6√(a²-36))/a cm.
Again.
a - √(a²-36)
√(a²-36) - d
Cross Multiply.
d = (a²-36)/a cm.
e = a+d
e = (2a²-36)/a cm.
Calculating a.
10² = ((2a²-36)/a)²+((6√(a²-36))/a)²
100 = ((4a⁴-144a²+1296)/a²)+((36a²-1296)/a²)
100a² = 4a⁴-108a²
4a⁴ = 208a²
4a² = 208
a² = 52
a = √(52)
a = 2√(13) cm.
a = 7.2111025509 cm.
Again, a is the radius of the bigger half circle or the diameter of the big inscribed half circle.
f = ½(a)
f = √(13) cm.
f is the radius of the inscribed big half circle.
Let g be the radius of the inscribed circle.
h = (2√(13)-g) cm.
j²+g² = (2√(13)-g)²
j² = 52-4√(13)g+g²-g²
j = √(52-4√(13)g) cm.
k = f+j
k = (√(13)+√(52-4√(13)g)) cm.
l = (√(13)+g) cm.
Calculating g.
(√(13)+g)² = (√(13)+√(52-4√(13)g))²+g²
13+2√(13)g+g² = 13+2√(13)*√(52-4√(13)g)+52-4√(13)g+g²
2√(13)g = 2√(13)*√(52-4√(13)g)+52-4√(13)g
2√(13)g = 2√(13(52-4√(13)g)+52-4√(13)g
√(13)g = √(13(52-4√(13)g)+26-2√(13)g
3√(13)g-26 = √(13(52-4√(13)g)
(3√(13)g-26)² = 13(52-4√(13)g)
117g²-156√(13)g+676 = 676-52√(3)g
117g² = 156√(13)g-52√(3)g
117g² = 104√(13)g
9g = 8√(13)
g = ⅑(8√(13)) cm.
g = 3.2049344671 cm.
Again, g is the radius of the inscribed circle.
Therefore, shaded red area is;
Half area circle with radius 2√(13) cm - Half area circle with radius √(13) cm - Area circle with radius ⅑(8√(13)) cm.
= ½*π(2√(13))²-½*π(√(13))²-π(⅑(8√(13)))²
= 26π-½(13π)-(832π/81)
= (4212π-1053π-1664π)/162
= 1495π/162 cm²
= 28.9918581304 cm²
≈ 29 cm²
We appreciate you contacting us. Our support will get back in touch with you soon!
Have a great day!
Please note that your query will be processed only if we find it relevant. Rest all requests will be ignored. If you need help with the website, please login to your dashboard and connect to support