Mathematics Question and Solution

By Ogheneovo Daniel Ephivbotor
8th June, 2024

Let the side length of the regular hexagon be 1 unit.


Therefore, area A (area inscribed square) is;


= 1 square unit.


Calculating area B.


a² = 1²+(½)²

a² = 1+¼

a = √(5/4)

a = ½√(5) units.

a = 1.1180339887 units.

a is the radius of the inscribed arc.


b = ⅙*180(6-2)

b = 120°

b is the single interior angle of the regular hexagon.


It implies;


(½√(5)/sin120) = (1/sinc)

c = 50.7684795195°


d = 60-c

d = 9.2315204805°


Area B is;


0.5*1.1180339887sin9.2315204805

= 0.0896798669 square units.


Therefore;


Area A ÷ Area B is ;

1÷0.0896798669

= 11.1507748052

Tags:

WhatsApp Google Map

Safety and Abuse Reporting

Thanks for being awesome!

We appreciate you contacting us. Our support will get back in touch with you soon!

Have a great day!

Are you sure you want to report abuse against this website?

Please note that your query will be processed only if we find it relevant. Rest all requests will be ignored. If you need help with the website, please login to your dashboard and connect to support