Let the three equal lengths be a.
Radius r of the semi circle is;
r = 5+4
r = 9 units.
5² = b²+a²-2abcos45
25 = b²+a²-√(2)ab --- (1).
9² = b²+a²-2abcos135
81 = b²+a²+√(2)ab --- (2).
Solving (1) and (2) simultaneously. Subtracting (1) from (2).
81 = b²+a²+√(2)ab
-(25 = b²+a²-√(2)ab)
56 = 2√(2)ab
28 = √(2)ab
a = 28/√(2)b
a = 14√(2)/b --- (3).
Substituting (3) in (1) to get b.
25 = b²+(14√(2)/b)²-√(2)(14√(2)/b)b
25 = b²+(392/b²)-28
53 = b²+(392/b²)
53 = (b⁴+392)/b²
53b² = b⁴+392
b⁴-53b²+392 = 0
Let b² = p
It implies;
p²-53p+392 = 0
Resolving the above quadratic equation via completing the square approach.
p²-53p+392 = 0
(p-½(53))² = -392+(-½(53))²
(p-½(53))² = -392+¼(2809)
(p-½(53))² = ¼(2809-1568)
(p-½(53))² = ¼(1241)
p-½(53) = ±√(¼(1241))
p-½(53) = ±½√(1241)
p = ½√(53)±½√(1241)
p = 3.6400549446±17.6139149538
It implies;
p ≠ 3.6400549446-17.6139149538
p = 3.6400549446+17.6139149538
p = 21.2539698984 units.
Notice!
p = b²
b² = 21.2539698984
b = √(21.2539698984)
b = 4.6102028045 units.
Calculating a, using (1).
a = 14√(2)/b
And b = 4.6102028045 units.
a = 14√(2)/4.6102028045
a = 4.2946028001 units.
(5/sin45) = (4.6102028045/sinc)
c = 40.6911378916°
d = 2a
d = 2*4.2946028001
d = 8.5892056002 units.
Therefore, x is;
sin40.6911378916° = x/8.5892056002
x = 8.5892056002sin40.6911378916
x = 5.6 units.
We appreciate you contacting us. Our support will get back in touch with you soon!
Have a great day!
Please note that your query will be processed only if we find it relevant. Rest all requests will be ignored. If you need help with the website, please login to your dashboard and connect to support