Calculating the length and width of the rectangle.
Let the length be a.
Let the width be b.
Notice;
½(a) = b
Or
2b = a
It implies;
b²+b² = 4²
2b² = 16
b² = 8
b = 2√(2) cm.
Therefore;
a = 2b
a = 4√(2) cm.
Let the semi circle radius be c.
Calculating c.
d²+2² = c²
d = √(c²-4)
e = d+2
e = √(c²-4)+2
It implies;
c² = (4√(2))²+(√(c²-4)+2)²-2*4√(2)*(√(c²-4)+2)cos45
c² = 32+c²-4+4√(c²-4)+4-8(√(c²-4)+2)
0 = 32+4√(c²-4)-8√(c²-4)-16
0 = 16-4√(c²-4)
16 = 4√(c²-4)
4 = √(c²-4)
16 = c²-4
20 = c²
c = √(20)
c = 2√(5) cm.
Again, c is the radius of the semi circle.
Notice;
d = √(c²-4), and c = 2√(5) units.
Therefore;
d = √((2√(5))²-4)
d = √(20-4)
d = √(16)
d = 4 cm.
tanf = 2/4
f = atan(½)°
g = 2f
g = 2atan(½)°
Therefore, Area of the Shaded Region is;
Area semi circle with radius 2√(5) units - Area triangle with height and base 2√(2) units respectively - Area square with side 2√(2) units - Area sector with angle 2atan(½)° and radius 2√(5) units + Area triangle with height 2√(5) units and base 2√(5)sin(2atan(½)) units.
= ½(2√(5))²*π-½(2√(2))²-(2√(2))²-(2atan(½)*π*(2√(5))²/360)+½(2√(5))²*sin(2atan(½))
= 10π-4-8-⅑(atan(0.5))π+8
= 10π-4-⅑(atan(0.5))π
= ⅑(90π-πatan(0.5)-36) cm²
= ⅑(π(90-atan(0.5))-36) cm²
= ⅑(πatan(2)-36) cm²
= 18.1429743559 cm² exactly in decimal.
We appreciate you contacting us. Our support will get back in touch with you soon!
Have a great day!
Please note that your query will be processed only if we find it relevant. Rest all requests will be ignored. If you need help with the website, please login to your dashboard and connect to support