Let AB be 1 unit.
Therefore;
BC = 2 units.
It implies, the regular hexagon side length is 3 units.
a = 120-108
a = 12°
b² = 2²+3²-2*2*3cos12
b = 1.1234895599 units.
(1.1234895599/sin12) = (2/sinc)
c = 21.72287686377°
d = 120-c
d = 120-21.72287686377
d = 98.27712313623°
Calculating Length Blue.
Let it be e.
e² = 3²+1.1234895599²-2*3*1.1234895599cos98.27712313623
e = 3.35151630086 units.
f = 180-12-21.72287686377
f = 146.27712313623°
(3.35151630086/sin98.27712313623) = (3/sing)
g = 62.34928014497°
h = 360-108-62.34928014497-146.27712313623
h = 43.3735967188°
j² = 2²+2²-8cos162
j = 3.95075336238 units.
k = ½(180-162)
k = 9°
l = 43.3735967188-9
l = 34.3735967188°
m² = 3.95075336238²+3.35151630086²-2*3.95075336238*3.35151630086cos34.3735967188
m = 2.23238484728 units.
(2.23238484728/sin34.3735967188) = (3.95075336238/sinn)
n = 87.6722960695°
o = 180-34.37359671894-87.6722960695
o = 57.95410721156°
p = ½(n)
p = 0.5*87.6722960695
p = 43.83614803475°
q = ½(o+9)
q = 0.5(57.95410721156+9)
q = 33.47705360578°
Calculating r, radius of the inscribed circle.
(r/tan33.47705360578)+(r/tan43.83614803475) = 2.23238484728
2.55362491876r = 2.23238484728
r = 2.23238484728÷2.55362491876
r = 0.8742023274 units
Therefore;
Radius ÷ Length Blue to 2 decimal places is;
0.8742023274÷3.35151630086
= 0.26083785634
≈ 0.26
We appreciate you contacting us. Our support will get back in touch with you soon!
Have a great day!
Please note that your query will be processed only if we find it relevant. Rest all requests will be ignored. If you need help with the website, please login to your dashboard and connect to support