Let the radius of the large circle be 1 unit.
Diameter of the large circle = 2 units.
sin60 = 2/a
a = ⅓(4√(3)) units.
Where a is the side length of triangle ABC.
b² = 2-2cos
b = √(3) units.
c = a-b
c = ⅓(√(3)) units.
(d/sin50) = (4√(3)/(3sin100))
d = 1.79639514045 units.
e² = (⅓(2√(3)))²+1²
e = ⅓√(21) units.
1² = (⅓√(21))²+f²-2*⅓√(21)f cos(atan(3/(2√(3))-10)
f² - 2.62161244054f + 1.33333333333 = 0
f = 1.93113 units.
g² = 1.93119²+(⅓(4√(3)))²-2*1.93119(⅓(4√(3)))cos10
g = 0.52778327773 unit.
(0.52778327773/sin10) = (1.93113/sinh)
h = 39.44883273038°
i = 60-h
i = 20.55116726962°
j = 120-i
j = 99.44883273038°
(k/sin60) = (4√(3)/(3sin99.44883273038))
k = 2.0275080083 units.
l² = 2.0275080083²+(4√(3)/3)²-2*2.0275080083(4√(3)/3)cos20.55116726962
l = 0.82185113743 unit.
Let the radius of the small circle be r.
Calculating r.
m = √(3)-0.82185113743
m = 0.91019967014 unit.
n² = 0.91019967014²+1-2*0.91019967014cos30
n = 0.50194757277 unit.
(0.50194757277/sin30) = (1/sino)
o = 84.9511110217°
p = 30+(180-o)
p = 125.0488889783°
1² = q²+0.50194757277²-2*0.50194757277qcos125.0488889783
q²+0.57651207375- 0.74804863419 = o
q = 0.623413 unit.
s² = 0.623413²+0.82185113743²-2*0.82185113743*0.623413cos30
s = 0.42031200563 unit.
(0.42031200563/sin30) = (0.623413/sint)
t = 47.86852326995°
r is;
(r/tan15) + (r/(0.5tan47.86852326995)) = 0.82185113743
r = 0.14831682181 unit.
Therefore;
Radius small ÷ Radius large to 2 decimal places is;
0.14831682181 ÷ 1
= 0.14831682181
≈ 0.15
We appreciate you contacting us. Our support will get back in touch with you soon!
Have a great day!
Please note that your query will be processed only if we find it relevant. Rest all requests will be ignored. If you need help with the website, please login to your dashboard and connect to support