Let the height and base of area triangle C be 2 units and 3 units respectively.
Therefore;
Area Triangle C is;
½*2*3
= 3 square units.
tana = (2/3)
a = atan(2/3)°
b = 189-a
b = 180-atan(2/3)
b = 146.30993247402°
c = ½(180-146.30993247402)
c = 16.84503376299°
Let the radius of the big circle be d.
Calculating d.
e = ½(146.30993247402)
e = 73.15496623701°
f = (3-d) units.
tan73.15496623701 = d/(3-d)
d = 9.9083269132-3.30277563773d
4.30277563773d = 9.9083269132
d = 9.9083269132/4.30277563773
d = 2.30277563773 units.
g = 3-d
g = 3-2.30277563773
g = 0.69722436227 units.
(0.69722436227/sin16.84503376299) = (h/sin146.30993247402)
h = 1.33461575561 units.
j² = 2d²
j² = 2(2.30277563773)²
j = 3.25661653798 units.
k = 180-45-16.84503376299
k = 118.15496623701°
Therefore, area triangle A is;
0.5*3.25661653798*1.33461575561sin118.15496623701
= 1.91602514718 square units.
Calculating area triangle B
l = 180-atan(3/2)
l = 123.69006752598°
m = ½(180-123.69006752598)
m = 28.15496623701°
n = ½(123.69006752598)
n = 61.84503376299°
Let the radius of the small circle be o.
Therefore;
tan61.84503376299 = o/(2-o)
o = 3.73703418364-1.86851709182o
2.86851709182o = 3.73703418364
o = 3.73703418364/2.86851709182
o = 1.30277563773 units.
p = 2-o
p = 2-1.30277563773
p = 0.69722436227 units.
q² = 2*0.69722436227²-2*0.69722436227²cos123.69006752598
q = 1.22945001971 units.
r² = 2o²
r² = 2(1.30277563773)²
r = 1.84240297561 units.
s = 190-45-28.15496623701
s = 106.84503376299°
Area Triangle B is;
0.5*1.84240297561*1.22945001971sin106.84503376299
= 1.08397485283 square units.
Notice;
Triangle A + Triangle B Must Equal Triangle C.
Triangle C = 3 square units.
Therefore;
Triangle A + Triangle B is;
1.91602514718+1.08397485283
= 3 square units.
Proved.
We appreciate you contacting us. Our support will get back in touch with you soon!
Have a great day!
Please note that your query will be processed only if we find it relevant. Rest all requests will be ignored. If you need help with the website, please login to your dashboard and connect to support