b² = 12²+12²
b² = 144+144
b² =288
b = 12√(2) cm.
Where b is AE = AC.
c² = 12²+6²
c = 6√(5) cm.
Where c is AM.
d = b-c
d = (12√(2)-6√(5))
d = 3.55415488348 cm.
Where d is EM.
e = 45-atan(1/2)
e = 18.43494882292°
Where e is angle MAC.
f = 45+18.43494882292
f = 63.43494882292°
Where f is angle EAB.
sin63.43494882292 = g/(12√(2))
g = 15.17893276881 cm.
cos63.43494882292 = h/(12√(2))
h = 7.5894663844 cm.
i = 12-7.5894663844
i = 4.4105336156 cm.
j = atan(15.17893276881/4.4105336156)
j = 73.79775141036°
Where j is angle ABE.
k = 90-73.79775141036
k = 16.20224858964°
Where k is angle CBE.
l = 180-45-16.20224858964
l = 118.79775141036°
Where l is angle BNC.
(12/sin118.79775141036) = (m/sin16.20224858964)
m = 3.82089210645 cm.
Where m is CN.
2n² = 3.82089210645²
n = 2.70177871865 cm.
Where n is BR.
tan16.20224858964 = 2.70177871865/o
o = 9.29822128133 cm.
Where o is NR.
p = 12-9.29822128133
p = 2.70177871867 cm.
q = 6-2.70177871865
q = 3.29822128135 cm.
r² = 12²+3.29822128135²
r = 12.44500958701 cm.
Where r is MR.
s = atan(12÷3.29822128135)
s = 74.63164469797°
Where s is angle ARM.
t = 90-74.63164469797
t = 15.36835530203°
Where t is angle MRN.
u = 180-45-15.36835530203
u = 119.63164469797°
(9.29822128133/sin119.63164469797) = (v/sin45)
v = 7.56404622865 cm.
It implies;
Area Shaded Region is;
Area triangle with height 9.29822128133 cm and base 12.44500958701sin15.36835530203 cm - Area triangle with height 9.29822128133 cm and base 7.56404622865sin15.36835530203 cm.
= (0.5*9.29822128133*12.44500958701sin15.36835530203) - (0.5*9.29822128133*7.56404622865sin15.36835530203)
= 6.0139523566 cm²
We appreciate you contacting us. Our support will get back in touch with you soon!
Have a great day!
Please note that your query will be processed only if we find it relevant. Rest all requests will be ignored. If you need help with the website, please login to your dashboard and connect to support